Optimization and Application of a Sequential Extraction Procedure for Multiple Actinide Elements

> Sherry A. Faye¹, Ralf Sudowe^{1,2} ¹Radiochemistry Program, University of Nevada, Las Vegas ²Department of Health Physics, University of Nevada, Las Vegas

> > NSSC Summer Seminar August 15, 2014

Outline

- Background and Importance
- Research Goals
 - Procedure modification for analysis of multiple actinide elements
 - Application of sequential extraction procedure to a broad range of soil profiles
 - Addition of a sixth fraction for complete sample dissolution
- Results
- Conclusions
- Future Work

Importance

- Radionuclide contamination risk is often assessed based on total concentration
- Potential for contaminant mobility must also be considered due to bioavailability concerns

Importance

- Release conditions are highly dependent on speciation
- No method currently exists for direct measurement of solid-phase speciation at environmental concentrations
 - Spectroscopic techniques (XANES, EXAFS) will measure speciation in near field aqueous solutions, but does not extend to low concentrations of solid-phase samples
- Best approach is to indirectly assess contaminant association with primary geochemical host phases

Sequential Extraction

Definition:

- Sequential extraction is the selective dissolution of soil phases with increasingly aggressive chemical treatment
- Furnishes Information On:
 - Physicochemical and biological availability
 - Mobilization and transport of contaminants
 - Origin

Kaplan, D I. Quantification of thorium and uranium sorption to contaminated sediments. Savannah River Site: U.S. Department of Energy; 2000. WSRC-MS-2000-00184/Rev.1. AC09-96SR18500.

History

• Tessier (1979)

- Five operationally defined fractions
- Most recent work is a slight modification
- Schultz (1998)
 - Am, Pu, and U extraction from IAEA 135 (marine sediment)

• Outola (2009)

 Maximum U and Pu extraction from NIST 4354 lake sediment and NIST 4357 ocean sediment

Promises and Problems

Promises

 Results lead to a better understanding of conditions under which contaminants may be released into the environment

Problems

- Does not fully mimic weathering conditions
 - Strong reagent, short reaction time vs weak reagent, long reaction time
- Method reproducibility varies based on chemical properties of the extracted elements and chemical composition of soils

Research Goals

- Part I Procedure Modification
 - Single Isotope Study
 - Reagent Interference Study
- Part II Procedure Application
 - Use modified procedure to investigate various soil and sediment samples
 - Determine variations in leaching due to different soil fractionation
- Part III Evaluation of a Sixth Fraction for Complete Dissolution
 - Evaluate microwave digestion and fusion procedures for complete dissolution
 - Apply chosen procedure to previously leached IAEA 384

Part I – Procedure Modification

Part I Introduction

- Outola procedure was optimized for maximum extraction of U and Pu
 - Anion exchange used for separations
- UNLV would like to add the ability to monitor for more actinides
- Switch to extraction chromatography based separations
 - Test for breakthrough
 - Verify no interferences created by sequential extraction reagents

Extraction Chromatography

1190165 2 0 5

Separation Procedure

- Rapid column extraction method for actinides in soil
 - Uses stacked TEVA, TRU and DGA extraction chromatographic resins on a vacuum box.

Maxwell III SL, Culligan BK (2006) J. Radioanal. and Nucl. Chem, 270(3):699

Maxwell Procedure

- Column load solution and valence adjustments
- Thorium
 - TEVA 9 M HCl
- Plutonium
 - TEVA 0.1 M HCI 0.05 M HF 0.03 M TiCl₃
- Uranium
 - TRU 0.1 M ammonium bioxalate
- Am
 - DGA 1 M HCl
 - REE purification on hot plate
 - TEVA 1 M HCl

Source Preparation and Counting

99.4 % procedural recovery for plutonium

Single Isotope Study

- To determine breakthrough potential of tracers to be used in application studies
 - Run a single tracer through EXC procedure and analyze all eluates

Tracer	Activity Concentration (Bq mL ⁻¹)
²²⁹ Th	1.70
²³² U	0.101
²⁴² Pu	0.0707
²⁴³ Am	1.76

Reagent Interference Study

- Determine if reagents used in sequential extraction procedure will have an effect on recoveries from EXC procedure
 - Prepare maximum concentration of each sequential extraction reagent
 - Add tracers of U, Pu, Am and Th to monitor recoveries
 - Run solutions through EXC procedure
 - Mount with CeF₃ and count by alpha spec

Sequential Extraction Reagents

Reagent	Concentration (M)
MgCl ₂	1
NH ₄ Ac in 25% HAc	2
NH ₂ OH · HCl in 25% HAc	0.1
30% H ₂ O ₂ in 0.05 M HNO ₃	30 wt %
HNO ₃	4

Outola I, Inn K, Ford R, Markham S, Outola P (2009) J. Radioanal. Nucl. Chem.

Reagent Interference Results

Part I Conclusions

- Single Isotope Study
 - No significant breakthrough was seen for any elements
- Reagent Interference Study
 - Most recoveries were above 75%
 - Similar recovery to control samples
 - Fractions and elements with lower recoveries will need longer count times

Part II - Procedure Application

Procedure Application

- Apply modified sequential extraction procedure to various soil and sediment samples
- Analyze for multiple actinide elements to determine potential for contaminant mobility under various conditions
- Monitor trace elements to determine phase selectivity

Reference Materials

Material	Activity Concentration	Soil Profile	Representative of
NIST 4354 Lake Sediment	0.26-28.6 mBq g-1 Th, U, Pu, Am	Higher organic content	Lake sediment
NIST 4357 Ocean Sediment	0.6-12 mBq g- 1 Th, U, Pu, Am	Higher salt content	Ocean sediment
IAEA 447 Moss Soil	5.3 Bq kg-1 239+240Pu	High organic content	Global fallout record
IAEA 384 Fangataufa Sediment	107 Bq kg-1 239+240Pu	~100 % CaCO3	Post-detonation debris

Sequential Extraction Chemistry

Sequential Extraction Procedure

Target Phase	Reagent	Concentration (M)	Temperature (°C)	Time (h)
Exchangeable	MgCl ₂	1	25	1
Carbonates	NH ₄ Ac in 25% HAc	2	50	2
Fe/Mn Oxides	NH ₂ OH · HCl in 25% HAc	0.1	70	6
Organic Material	30% H ₂ O ₂ in 0.05 M HNO ₃	30 wt %	70	3
Persistently Bound	HNO ₃	4	90	4

Outola I, Inn K, Ford R, Markham S, Outola P (2009) J. Radioanal. Nucl. Chem.

Stable Element Analysis

- Analyze leachates for stable elements by ICP-AES
 - Procedure
 - Al, Ca, Co, Cr, Cs, Fe, K, Mg, Mn, Na, P, Si, Ti, Y, Zn
 - Fission products
 - Sr, Zr
 - Heavy metals
 - Pb

Actinide Analysis

Procedure	Source	Time
Sequential extraction	Outola et al	1 week
Tracer addition/evaporation	N/A	3-4 days
Preconcentration	Fe(III)OH, CeF ₃	1 day
Separations	Maxwell et al	1–2 days
Sample mounting	Sill et al	2 hours
Alpha counting	Canberra Alpha Analyst	1–5 weeks

Total time: 3-7 weeks (exclusive of data analysis)

Preconcentration

- Ferric Hydroxide Co-precipitation
 - Concentrate actinides and eliminate major interferences
- Cerium Fluoride Microprecipitation
 - Reduce sample mass for column loading
 - Precipitate is filtered to separate
 - Filter is washed with 3 M HNO₃ 0.25 M boric acid to remove precipitate > 90 % removal from filter

Preparation for Alpha Spectroscopy

- Separations
 - Extraction chromatography Maxwell et al
- Sample mounting
 - CeF₃ microprecipitation Sill et al
- Counting
 - Canberra and Ortec systems using PIPS detectors
 - Counting statistics based on tracer activity

Uranium Results

Plutonium Results

Plutonium Revocery

Part II Conclusions

- Obvious differences are seen in contaminant distribution per fraction based on different sediment samples
- Leaching behavior can be related to soil fractionation of each sediment
- Differences in leaching based on element being leached

Part III – Evaluation of a Sixth Fraction for Complete Dissolution

Part III Introduction

- Incomplete dissolution of some elements seen in some soils
- Attempt to obtain 100 % actinide contaminant recovery with a complete dissolution step at the end of sequential extraction procedure
- IAEA 384 used based on plutonium activity concentration

Procedure Selection

- Microwave Digestion
 - EPA soil method
 - EPA-600-R-12-636, August 2012
 - Carbonate specific method
 - Kemp AJ, Brown CJ (1990) Analyst, 115:1197
- Fusion
 - Sodium hydroxide fusion for concrete matrices
 - EPA 402-R-14-004, April 2014

EPA Soil Microwave Digestion

- 0.25 g IAEA 384
- 9 mL conc. HNO₃
- 3 mL conc. HF
- Microwave conditions:
 - 180 °C, 15 bar, 1000 W

Results

- White precipitate formed
- XRD used to verify precipitate was CaF₂

Alpha Results

- Solution
 - 5 % recovery
- Dissolved precipitate
 - 95 % recovery

Carbonate Specific Microwave Digestion

- Add 0.25 g IAEA 384 + 20 mL 0.5 M acetic acid to vessel and place on hot plate to release CO₂ gas
- Add 0.84 mL conc. HF and 3 mL conc. HNO₃ to vessel
- Microwave conditions:
 - 180 °C, 15 bar, 630 W, 3 minutes
- Add 10 mL 4 % boric acid to vessel
- Microwave conditions:
 - 180 °C, 15 bar, 570 W, 30 minutes

Carbonate Specific Microwave Digestion

Part III Conclusions

- Problems with EPA soil method
- Carbonate specific method recommended for IAEA 384
- Fusion will be completed in near future

Summary

Procedure Modification

- Most recoveries for control samples are above 75 %
- Microprecipitation procedural recovery is near 100 %

Procedure Application

- Obvious differences are seen in contaminant distribution per fraction based on different sediment samples
- Plutonium leaches based on soil fractionation of each sediment

Addition of a Sixth Fraction

- Problems with EPA soil method
- Carbonate specific method recommended for IAEA 384
- Fusion will be completed in near future

Future Work

- Analyze leachates for stable elements by ICP-AES
 AI, Ca, Co, Cr, Cs, Fe, K, Mg, Mn, Na, P, Pb, Si, Sr, Ti, Y, Zn, Zr
- Fusion
- Apply fraction 6 to IAEA 384

Acknowledgements

- Dr. Kenneth G.W. Inn (NIST)
- Students:
 - Francisca Hernandez and Jason Richards
- HF Buddies:
 - Balazs Bene, Wes Boyd, Jaimie Daum, Athena Gallardo, Julia Nell, Rebecca Springs
- Laboratory Support:
 - Mary Turner, Julie Bertoia, and Trevor Low

This work is funded by the Nuclear Science and Security Consortium in cooperation with the University of California, Berkeley Sub award #0007635 from the U.S. Department of Energy, National Nuclear Security Cooperative Agreement #DE-NA 0000979.

Acknowledgements

UNLV Radiochemistry

Thank You!

References

[1] Tessier A, Campbell PGC, Bisson M (1979) Anal. Chem. 51(7):844

- [2] Outola I, Inn K, Ford R, Markham S, Outola P (2009) J. Radioanal. Nucl. Chem.
- [3] Kaplan, D I. Savannah River Site: U.S. Department of Energy; 2000. WSRC-MS-2000-00184/Rev.1. AC09-96SR18500.
- [4] Maxwell III SL, Culligan BK (2006) J. Radioanal. and Nucl. Chem, 270(3):699

[5] Sill CW (1987) Nuclear and Chemical Waste Management 7:201

- [6] INTERNATIONAL ATOMIC ENERGY AGENCY, Reference Sheet for IAEA-384, 'Radionuclides in Fangataufa Lagoon sediment'. IAEA, Vienna, 4 pp.
- [7] INTERNATIONAL ATOMIC ENERGY AGENCY, Reference Sheet for IAEA-384, 'Radionuclides in Fangataufa Lagoon sediment'. IAEA, Vienna, 4 pp.